3.508 \(\int \sec ^5(c+d x) (a+b \tan (c+d x)) \, dx\)

Optimal. Leaf size=74 \[ \frac{3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac{3 a \tan (c+d x) \sec (c+d x)}{8 d}+\frac{b \sec ^5(c+d x)}{5 d} \]

[Out]

(3*a*ArcTanh[Sin[c + d*x]])/(8*d) + (b*Sec[c + d*x]^5)/(5*d) + (3*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (a*Sec[
c + d*x]^3*Tan[c + d*x])/(4*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0464041, antiderivative size = 74, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.158, Rules used = {3486, 3768, 3770} \[ \frac{3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac{3 a \tan (c+d x) \sec (c+d x)}{8 d}+\frac{b \sec ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^5*(a + b*Tan[c + d*x]),x]

[Out]

(3*a*ArcTanh[Sin[c + d*x]])/(8*d) + (b*Sec[c + d*x]^5)/(5*d) + (3*a*Sec[c + d*x]*Tan[c + d*x])/(8*d) + (a*Sec[
c + d*x]^3*Tan[c + d*x])/(4*d)

Rule 3486

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(b*(d*Sec[
e + f*x])^m)/(f*m), x] + Dist[a, Int[(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e, f, m}, x] && (IntegerQ[2
*m] || NeQ[a^2 + b^2, 0])

Rule 3768

Int[(csc[(c_.) + (d_.)*(x_)]*(b_.))^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Csc[c + d*x])^(n - 1))/(d*(n -
 1)), x] + Dist[(b^2*(n - 2))/(n - 1), Int[(b*Csc[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1
] && IntegerQ[2*n]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int \sec ^5(c+d x) (a+b \tan (c+d x)) \, dx &=\frac{b \sec ^5(c+d x)}{5 d}+a \int \sec ^5(c+d x) \, dx\\ &=\frac{b \sec ^5(c+d x)}{5 d}+\frac{a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{4} (3 a) \int \sec ^3(c+d x) \, dx\\ &=\frac{b \sec ^5(c+d x)}{5 d}+\frac{3 a \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a \sec ^3(c+d x) \tan (c+d x)}{4 d}+\frac{1}{8} (3 a) \int \sec (c+d x) \, dx\\ &=\frac{3 a \tanh ^{-1}(\sin (c+d x))}{8 d}+\frac{b \sec ^5(c+d x)}{5 d}+\frac{3 a \sec (c+d x) \tan (c+d x)}{8 d}+\frac{a \sec ^3(c+d x) \tan (c+d x)}{4 d}\\ \end{align*}

Mathematica [A]  time = 0.199198, size = 68, normalized size = 0.92 \[ \frac{a \tan (c+d x) \sec ^3(c+d x)}{4 d}+\frac{3 a \left (\tanh ^{-1}(\sin (c+d x))+\tan (c+d x) \sec (c+d x)\right )}{8 d}+\frac{b \sec ^5(c+d x)}{5 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^5*(a + b*Tan[c + d*x]),x]

[Out]

(b*Sec[c + d*x]^5)/(5*d) + (a*Sec[c + d*x]^3*Tan[c + d*x])/(4*d) + (3*a*(ArcTanh[Sin[c + d*x]] + Sec[c + d*x]*
Tan[c + d*x]))/(8*d)

________________________________________________________________________________________

Maple [A]  time = 0.039, size = 74, normalized size = 1. \begin{align*}{\frac{b}{5\,d \left ( \cos \left ( dx+c \right ) \right ) ^{5}}}+{\frac{a \left ( \sec \left ( dx+c \right ) \right ) ^{3}\tan \left ( dx+c \right ) }{4\,d}}+{\frac{3\,a\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{8\,d}}+{\frac{3\,a\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{8\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^5*(a+b*tan(d*x+c)),x)

[Out]

1/5/d*b/cos(d*x+c)^5+1/4*a*sec(d*x+c)^3*tan(d*x+c)/d+3/8*a*sec(d*x+c)*tan(d*x+c)/d+3/8/d*a*ln(sec(d*x+c)+tan(d
*x+c))

________________________________________________________________________________________

Maxima [A]  time = 1.52377, size = 116, normalized size = 1.57 \begin{align*} -\frac{5 \, a{\left (\frac{2 \,{\left (3 \, \sin \left (d x + c\right )^{3} - 5 \, \sin \left (d x + c\right )\right )}}{\sin \left (d x + c\right )^{4} - 2 \, \sin \left (d x + c\right )^{2} + 1} - 3 \, \log \left (\sin \left (d x + c\right ) + 1\right ) + 3 \, \log \left (\sin \left (d x + c\right ) - 1\right )\right )} - \frac{16 \, b}{\cos \left (d x + c\right )^{5}}}{80 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="maxima")

[Out]

-1/80*(5*a*(2*(3*sin(d*x + c)^3 - 5*sin(d*x + c))/(sin(d*x + c)^4 - 2*sin(d*x + c)^2 + 1) - 3*log(sin(d*x + c)
 + 1) + 3*log(sin(d*x + c) - 1)) - 16*b/cos(d*x + c)^5)/d

________________________________________________________________________________________

Fricas [A]  time = 1.91627, size = 242, normalized size = 3.27 \begin{align*} \frac{15 \, a \cos \left (d x + c\right )^{5} \log \left (\sin \left (d x + c\right ) + 1\right ) - 15 \, a \cos \left (d x + c\right )^{5} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 10 \,{\left (3 \, a \cos \left (d x + c\right )^{3} + 2 \, a \cos \left (d x + c\right )\right )} \sin \left (d x + c\right ) + 16 \, b}{80 \, d \cos \left (d x + c\right )^{5}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/80*(15*a*cos(d*x + c)^5*log(sin(d*x + c) + 1) - 15*a*cos(d*x + c)^5*log(-sin(d*x + c) + 1) + 10*(3*a*cos(d*x
 + c)^3 + 2*a*cos(d*x + c))*sin(d*x + c) + 16*b)/(d*cos(d*x + c)^5)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (a + b \tan{\left (c + d x \right )}\right ) \sec ^{5}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**5*(a+b*tan(d*x+c)),x)

[Out]

Integral((a + b*tan(c + d*x))*sec(c + d*x)**5, x)

________________________________________________________________________________________

Giac [B]  time = 1.3023, size = 190, normalized size = 2.57 \begin{align*} \frac{15 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 15 \, a \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) + \frac{2 \,{\left (25 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{9} - 40 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{8} - 10 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{7} - 80 \, b \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{4} + 10 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 25 \, a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 8 \, b\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{5}}}{40 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^5*(a+b*tan(d*x+c)),x, algorithm="giac")

[Out]

1/40*(15*a*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 15*a*log(abs(tan(1/2*d*x + 1/2*c) - 1)) + 2*(25*a*tan(1/2*d*x
+ 1/2*c)^9 - 40*b*tan(1/2*d*x + 1/2*c)^8 - 10*a*tan(1/2*d*x + 1/2*c)^7 - 80*b*tan(1/2*d*x + 1/2*c)^4 + 10*a*ta
n(1/2*d*x + 1/2*c)^3 - 25*a*tan(1/2*d*x + 1/2*c) - 8*b)/(tan(1/2*d*x + 1/2*c)^2 - 1)^5)/d